Quickest Change Detection under Transient Dynamics: Theory and Asymptotic Analysis

نویسندگان

  • Shaofeng Zou
  • Georgios Fellouris
  • Venugopal V. Veeravalli
چکیده

The problem of quickest change detection (QCD) under transient dynamics is studied, where the change from the initial distribution to the final persistent distribution does not happen instantaneously, but after a series of transient phases. The observations within the different phases are generated by different distributions. The objective is to detect the change as quickly as possible, while controlling the average run length (ARL) to false alarm, when the durations of the transient phases are completely unknown. Two algorithms are considered, the dynamic Cumulative Sum (CuSum) algorithm, proposed in earlier work, and a newly constructed weighted dynamic CuSum algorithm. Both algorithms admit recursions that facilitate their practical implementation, and they are adaptive to the unknown transient durations. Specifically, their asymptotic optimality is established with respect to both Lorden’s and Pollak’s criteria as the ARL to false alarm and the durations of the transient phases go to infinity at any relative rate. Numerical results are provided to demonstrate the adaptivity of the proposed algorithms, and to validate the theoretical results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Quickest Transient Change Detection

We consider the problem of quickest transient change detection under a Bayesian setting. The change occurs at a random time Γ1 and disappears at a random time Γ2 > Γ1. Thus, at any time k, the system can be in one of the following states, i) prechange, ii) in–change, and iii) out–of–change. We model the evolution of the state by a Markov chain. The state of the system can only be observed parti...

متن کامل

General Asymptotic Bayesian Theory of Quickest Change Detection

The optimal detection procedure for detecting changes in independent and identically distributed (i.i.d.) sequences in a Bayesian setting was derived by Shiryaev in the 1960s. However, the analysis of the performance of this procedure in terms of the average detection delay and false alarm probability has been an open problem. In this paper, we develop a general asymptotic change-point detectio...

متن کامل

Quickest Detection for Changes in Maximal kNN Coherence of Random Matrices

The problem of quickest detection of a change in the distribution of a n × p random matrix based on a sequence of observations having a single unknown change point is considered. The forms of the preand post-change distributions of the rows of the matrices are assumed to belong to the family of elliptically contoured densities with sparse dispersion matrices but are otherwise unknown. A non-par...

متن کامل

Asymptotic Bayesian Theory of Quickest Change Detection for Hidden Markov Models

In the 1960s, Shiryaev developed a Bayesian theory of change-point detection in the i.i.d. case, which was generalized in the beginning of the 2000s by Tartakovsky and Veeravalli for general stochastic models assuming a certain stability of the log-likelihood ratio process. Hidden Markov models represent a wide class of stochastic processes that are very useful in a variety of applications. In ...

متن کامل

A Semi-Parametric Binning Approach to Quickest Change Detection

The problem of quickest detection of a change in distribution is considered under the assumption that the pre-change distribution is known, and the post-change distribution is only known to belong to a family of distributions distinguishable from a discretized version of the pre-change distribution. A sequential change detection procedure is proposed that partitions the sample space into a fini...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1711.02186  شماره 

صفحات  -

تاریخ انتشار 2017